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The two-dimensional problem of generating Cerenkov radiation in an ideally
conducting fluid and an ideally conducting elastic conductor in a magnetilc
field by means of a moving mechanical impulse travelling in the contact plane
of medla is examined. The case of 1sotropic action of primary magnetic field
1s studied. Solutions are given for the two-dimensional case by the method
of characteristics without accounting for dispersion.

In the first sectlon initial equations and boundary conditions are devel-
oped. In the second section the case of supermagnetosonic velocity in both
media, in the third section the case of intermagnetosonic velod¢ity in the
elastic conductor and supermagnetosonic velocity in the fluild, and in the
fourth sectlion the case of supermagnetosonic velocity in the fluld and sub-
magnetosonic velocity in the elastic conductor (it 1s assumed that the velo=
city of transverse waves in the elastlic body is greater than the magnetosonic
velocity in the fluid) are examined.

1. An ideal elastic conductor occupying the lower half-space (Fig.l) and
an ldeally conducting compressible ldeal liquid [ occupylng the upper half-
space will be examined. The normal force pP &acts
on the surface of the elastic conductor. This
normal force trayels with the velocity v, in the
direction of the x, -~axls. The primary fleld acts
isotropically in the direction of the x,-axis.

%L We denote by |H|= g,= § . The system of refer-
ence is shown in Fig,1. The gravitational field
vy in the fluld 1s neglected. We will assume that
the fluid is initially under tension to such an
Fig. 1 extent that it can sustain negative pressures.
In addition, for the sake of definiteness, we
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assume that
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a* > a, > ap* (1.1

a** = e + %%, ag*® = ao® + %?

al:(k'i~20>/z’ az:(i)'/z

p P
2 M 2 _ Hofl?
" 4np 0 ™ “4np,y

Here 4, is the velocity of the acoustic wave in the fluid, X and ¢
are elastic constants of the elastic conductor, p and p, are densities
of the elastic conductor and the fluid respectively, and u and u, are
magnetic permeabilities of the elastic conductor and the fluid,

Assumption (1.1) 1s not essential, solution for other inequalities is
analogous., For simplification we will set u s p,» 1 1in the following mate-
rial. We will also take advantage of nonrelativistic equations for magneto-
hydrodynamics [1] apd for an elastic conductor (v,2/¢® <€ 1). According to
[2] linearized equations of magnetoelasticity for an ideal elastic conductor
and a fluid will have the form (1.2)

a,*Vu + (a,® — a,?) grad divu + [rot rot (ux HY) x H — 6!"‘ =0
where
E=—%(§“—; xH),  h=rot(u xH) (1.3)
a,? grad divu’ +~— [rot rot (w’ x H)] x H — az°2 =0 (1.4)
where
E = — %(.g.t‘é X H); h’ = rot (u’ x H) (1.5)

Equations (1.2) and {1.4) were simplified with respect to 3/3t° under
the assumption that aw/3t°#0 and awf3t°# O . In the case where |H|=g,=§
equations (1.2) and (1.4) acquire the form

P ) %’
a,’V? 4+ (a,*% — a,?) grad div u — dtca =0, a** graddivu’ — 2 =0
(1.6)
Boundary conditions on the surface of the half-space will have the form
(1.7)

Ogoge + T3°,° — Qgoge —— T3°;° = — P8 (.’t1° + vot°), Ggog0 = 0, Ugo == U3°’

Here Gioxc i1s the mechanical stress in the elastic conducter, ci:io is the
pressure in the fluid, Tyoxe, and Tjopo are Maxwell's stress tensors in the
solid body and in the fluid.

Maxwell's tensors are expressed in the following formulas for u = p,® 1
T = Zig [Hyohio + Hyohye — Hhdjop0]
(1.8)
Tiope = 2:1;; [{Hyohe' +Hiohyo' — Hh'800]
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In the case where |KE|=4#,= 7, and after expressing h and ¥ through
through u and W, conditions (1,7) take finally the form

*2 2
p (a,** — 2a,?) Upe, 1o T Py *?uge o — Polo™* 2,0 — Po8o**Use g0 =

= — P8 (z,° + v,t°)
(1.9)
Upe, g0+ Uge,30= 0, Uge — Uge' = 0
It 1s assumed here that Ug = Uy’ = (0 since in the case of the two-
dimensional problem stresses are independent of x,.

Further, let us introduce, analogously to [3], the followng potentials:

u = @ + ¥, Uug == Dge — ¥pe, u’ = grad @ (1.10)
Then the system of equations (1.6) is reduced to the folloing, separate

for each potential, equations (1.11)

1 1 1
vg(b __ F.a (D,t°l° — 0, V¥ — ;? W,(oto = 0, VZQ —F(p".‘. = 0

We Introduce a new reference system [ 3]
z, = z,° + p,t° g = z4°, t=1r° (1.12)

We shall examine the established process, then Equations (1.11) and bound-
ary conditions (1.9) will assume the form

d)'ss —_ alz(b,u = O, Wss -_ azzq’,n = 0, (p,33 - aOZ(p,ll = 0 (1-13)

»

(@} = v61/ @*? — 1, ag?= ot /agd —1, a? = vg?/ ag** — 1)

P (ay** — 2a%) uy, + pa*Pus; — Poaoﬂul:l — Poaoﬂus',s = — P} (z,)
(1.14)
Us + usy =0, us—us =0
o P (a** — 2a,%) @y, + pa*?D gy — 20a,2¥ 15 — Poao"q),u -
— pua*¥p,, = — Pb (z,) (1.15)
20,3 + V33 — ¥, = 0, O, — ¥, — 9, =0

When, according to condition (1.1), the inequality a,?> a,® > a,?
1s satisfled, the case of supermegnetosonic velocity in both media occurs for
vy > af'; the case of intermagnetosonic velocity in the elastic conductor and
supermagn~tosonic velocity in the fluid occurs for g,< v,< al’; the case
of submagnetosonic velocity in the elastic conductor and supermagnetosonic
velocity in the fluild occurs for a°’< Ve< Gy

These three cases for intervals of velocity change of mechanical impulse
v, are examined below; 1in the first of these cases three cones of Cerenkov
radiation appear, two in the elastic conductor and one in the fluid, in the
second case one cone appears 1in -the elastlc conductor and one in the liquid,
in the third case one cone appears in the liquid.
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2. For supermagnetosonic velocity in both media Gps @ ap> O . We will
seek solutions of Equations (1.13) in the form

D = D (z; —a,z;), V=W (z; —a,zy), P =@ (zy + aox) (2.1)

For x;= 0 we find from the second, the third and the first boundary
condition (1.15),.respective1y,

n 1— aﬁz ” ” 1 + aﬁl " ” P
(D = — o \P‘ y (p = — 2% ‘F y lI’ (:1:1) = M—-b (:1:1) (2.2)
Here primes denote differentiation with respect to the argument CZEH

1 4 aqt
2ae

M =opla* (1 + a?) — 222112 — 20820, — peag*? (1 + %)

2(11
Integrating the last equation of (2.2) we find

Y (2, —0q0%5) = %H (2, — gazg) (F 1s Heaviside's function) (2.4)

The constant of integratlon 1s omitted: 1t can only introduce a constant
displacement which will be unessential.

In the following (and also in later Sections)we will operate with dis-
placements not defined exactly in this sense (the derivatives of displace-
ments, apparently, will be defined exactly). After computation of ¥’, —
$’ and ¢’ are determined from the other two relationships of (2.1), Then

the displacements vy, and vy’ (¢ = 1, 3) are determined with accuracy to
arbltrary constants

P 1 —ay
u = — 17[ S = H (2, — oyx3) + ouH () — 0‘21'3)]
B pP1 + as?
ul —_— _M-‘—Z(IQ—H (.’El + a«oza)

(2.9)
P 1 —as?
Usg = H[ 2a2 H (2, — oyz5) — H (z, — azxa)]

2
u' = — 7 T H (@ + o)
Components of field vectors in both media are found with the aid of (2.5)
from Formulas (3.3} and (1.5) (it is recalled that a(...)/at° must be replaced
after transformation by v,3{...)/sx,). From
solutions of (2.5) it is evident that for
supermagnetosonic velocity in both media
three cones of Cerenkov radlation arise:
two in the elastlc conductor and one in the
fluid (Fig.2). The case is analogous for
field components. It follows from solutions
of (2.5) that the orders of magnitude of
deformations and velocity are P8/ and
onb/M and, correspondingly, the orders of magnltude of perturbed magnetlc
and électrical fields in the region of cones are gpb/¥ and Pﬁvob/bﬂ ; 1in

Fig. 2
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the determination of the order of magnitude the symbol 4 has the signifil-
cance that 1t determines the influence function which on multiplication by
the general function and after integration yields the solution for a given
loading and permits to compare the orders of magnitude of parameters under
examination, It follows from the discusslon presented that when the loadings
result in stresses of the order of the limit of elasticity 1n the elastic
conductor, then the field intensities of Cerenkov radiation have practical
orders of magnitude [3 and 4].

3. Let us examine Intermagnetosonilc veloclty of impulse in the elastic
conductor and supermagnetosonic velocity in the fluid., Por construction of
solutions in the case a,* < @y < ¥y < a* we proceed analogously to the
papers [3] and [4], i.e. we utilize solutlons of Section 2 introducing in~
stead of — o2 the quantity 82> O or a,— — 18, ." Taen the first of
Equations (1.13) becomes elliptical.

In comnection with this and in accordance with [ 3] we introduce instead
of the function p#l(x, —a,x;) 1ts analytical continuation in sclutions (2,5)

HO=H(@ + Pz)=thi+1=Llmr+1-2 @1

where

E = 2, + iByxg = rei® (3.2)

The function #(g) satisfies the elliptical equation for ¢ and assumes
the values of the Heaviside function along the real axis, After determining
¥ and ¢ from boundary conditions or appropriately selected analytical
extenslions, we compute the functions u and u’ . Retaining the real parts
we obtain the desired solution to the problem. Solutions atisfy the equa-
tions and the boundary conditlons. After substltuting o, by ~ 18, in the
expression for ¥ we obtain

M = s - isy 3.3)

1= — [Zoaton + ottt L+ 0 S, s=pla (1 — B — 2071

Further

i . 51 Sy

i = ny + ing (nl = m s Mg ——m) (3.4)
From this, after computation of ¥ and g, according to (1.15), and after

substitution into (1.10), or directly from (2.5) on the basis of appropriately

selected analytical continuations, and after separation of real parts, we find

(3.5)
u; = P{1 2_[31&’ [n‘ Inr+ n,(i-—— —n—)]—— naoaH (21 — dgts) + 2 "ln | £1—0tg%3 |}

ug=2D {1 —;a“ [nl (1—— —:’;—) —_— fg—ln r} —nyH (2 — 0g3) +%ln | 2y — oy }}

ul' ——P[nl Mﬂ(xl—[— aoma)— Ei%dz’ln [11—{' [« 2% 23 I]
— P

I

n 2o

uy = [nl 1o H (z, + aozg) — Ly + % In | Z1 + %03 |]



1052 8, Kaiiski

It 15 evident from (3.5) that the solution in the elastic medium and in
the fluid consists of a stationary part and & cone of Cerenkov radlation,
Stationary disturbances overtake the fronts of disturbances of Cerenkov radi~

atian annaa M o vard A st IO B ey Py P P
ation cones. The orders of magnitude of individual parameters of solutions

correspond to those established in the previous section.

The computation of field components in both medis by means of relation-
ships (1.3) and (1.5) is not presented here,

k. Let us examine submagnetosonic vel oity of impulse 1

Al RREIRSAIN OS2

O ) »
ductor and supermagnetosonlc velocity in the fluid., Just as in Section 3 we
introduce the following notation:

oy = = By, oy = — Iy 4.1
sinee equations for & and ¥ will transform from hyperbolic to elliptical,
Consequently we write in analogy to {¥.1)

H(E)=H(z, + i§1x3)=—;;ln E+1 2%—}11 ry -+ m%

(4.2)
H(Ey) =H(z, + lﬁgxa)m——}n’éa%«i—-—-—lnrz—i-i——w
where
§1 = xl “‘i’“‘ iglxa oz rlei%' gg == xl "‘i" i32$3 = eriv‘ (4.3)
Substituting (4.1} into (2.5) we find

M = s, + isy, 8 = — Polp*? (1+°°2)1—“Bs

s =p o (1 — B — 207 LEP 1 500, (4.4)
1

—L == Ry + ing, ny = *—*ﬁ““" Tg === o "—f?;"—‘ (4.5)

M 512 5927 52 4 5t

Substitution of these expressions into (2.5) with corresponding analytical
continuations (or with functions ¥ and p determined from boundary condi-
tions) leads to the following result after separation of real parts

UI:P{’:[ 3382 111?'1’*32111’2]—%?12[1;{3522( “’%‘)"‘Bﬁ( "’%}}
w1 )~ (o 2] 2 e 2
u1'=-—P[3-:—Bzgﬂ15(ml+%$s)“ﬁwm!%ﬂ”aﬂsq (4.6)

200
ug =—P [1 "—2322 mH (21 -+ doZg) — ﬁ‘ ! —.82 In |23 + otos t}

Solution {4.6) gives only one Cerenkov radiation cone in the fluld {and
the statlonary part). In the elastic medium the solution has a stationary
character (in accordance with the finding that after a sufflclently long
time interval the process 1s established). As before, the derivatives of
(4.6} will be determined unambigously; field vectors are computed from (1.3)
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and (1.5). As far as the orders of magnitude are concerned, remarks in the
previous section are applicable,

The case of submagnetosonic veloeity in the fluid (v, < g5 ) 18 not exam-
ined since it does not yield radiation cones. The stationary solution in
this case is also readily obtained on the basis of solution of (2.5).
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